direct product, p-group, elementary abelian, monomial, rational
Aliases: C25, SmallGroup(32,51)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C25 |
C1 — C25 |
C1 — C25 |
Generators and relations for C25
G = < a,b,c,d,e | a2=b2=c2=d2=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, de=ed >
Subgroups: 374, all normal (2 characteristic)
C1, C2, C22, C23, C24, C25
Quotients: C1, C2, C22, C23, C24, C25
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)(17 18)(19 20)(21 22)(23 24)(25 26)(27 28)(29 30)(31 32)
(1 22)(2 21)(3 8)(4 7)(5 19)(6 20)(9 24)(10 23)(11 28)(12 27)(13 30)(14 29)(15 18)(16 17)(25 32)(26 31)
(1 15)(2 16)(3 31)(4 32)(5 30)(6 29)(7 25)(8 26)(9 12)(10 11)(13 19)(14 20)(17 21)(18 22)(23 28)(24 27)
(1 3)(2 4)(5 27)(6 28)(7 21)(8 22)(9 13)(10 14)(11 20)(12 19)(15 31)(16 32)(17 25)(18 26)(23 29)(24 30)
(1 28)(2 27)(3 6)(4 5)(7 19)(8 20)(9 17)(10 18)(11 22)(12 21)(13 25)(14 26)(15 23)(16 24)(29 31)(30 32)
G:=sub<Sym(32)| (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32), (1,22)(2,21)(3,8)(4,7)(5,19)(6,20)(9,24)(10,23)(11,28)(12,27)(13,30)(14,29)(15,18)(16,17)(25,32)(26,31), (1,15)(2,16)(3,31)(4,32)(5,30)(6,29)(7,25)(8,26)(9,12)(10,11)(13,19)(14,20)(17,21)(18,22)(23,28)(24,27), (1,3)(2,4)(5,27)(6,28)(7,21)(8,22)(9,13)(10,14)(11,20)(12,19)(15,31)(16,32)(17,25)(18,26)(23,29)(24,30), (1,28)(2,27)(3,6)(4,5)(7,19)(8,20)(9,17)(10,18)(11,22)(12,21)(13,25)(14,26)(15,23)(16,24)(29,31)(30,32)>;
G:=Group( (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32), (1,22)(2,21)(3,8)(4,7)(5,19)(6,20)(9,24)(10,23)(11,28)(12,27)(13,30)(14,29)(15,18)(16,17)(25,32)(26,31), (1,15)(2,16)(3,31)(4,32)(5,30)(6,29)(7,25)(8,26)(9,12)(10,11)(13,19)(14,20)(17,21)(18,22)(23,28)(24,27), (1,3)(2,4)(5,27)(6,28)(7,21)(8,22)(9,13)(10,14)(11,20)(12,19)(15,31)(16,32)(17,25)(18,26)(23,29)(24,30), (1,28)(2,27)(3,6)(4,5)(7,19)(8,20)(9,17)(10,18)(11,22)(12,21)(13,25)(14,26)(15,23)(16,24)(29,31)(30,32) );
G=PermutationGroup([[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16),(17,18),(19,20),(21,22),(23,24),(25,26),(27,28),(29,30),(31,32)], [(1,22),(2,21),(3,8),(4,7),(5,19),(6,20),(9,24),(10,23),(11,28),(12,27),(13,30),(14,29),(15,18),(16,17),(25,32),(26,31)], [(1,15),(2,16),(3,31),(4,32),(5,30),(6,29),(7,25),(8,26),(9,12),(10,11),(13,19),(14,20),(17,21),(18,22),(23,28),(24,27)], [(1,3),(2,4),(5,27),(6,28),(7,21),(8,22),(9,13),(10,14),(11,20),(12,19),(15,31),(16,32),(17,25),(18,26),(23,29),(24,30)], [(1,28),(2,27),(3,6),(4,5),(7,19),(8,20),(9,17),(10,18),(11,22),(12,21),(13,25),(14,26),(15,23),(16,24),(29,31),(30,32)]])
C25 is a maximal subgroup of
C24⋊3C4
C25 is a maximal quotient of C2.C25
32 conjugacy classes
class | 1 | 2A | ··· | 2AE |
order | 1 | 2 | ··· | 2 |
size | 1 | 1 | ··· | 1 |
32 irreducible representations
dim | 1 | 1 |
type | + | + |
image | C1 | C2 |
kernel | C25 | C24 |
# reps | 1 | 31 |
Matrix representation of C25 ►in GL5(ℤ)
1 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
-1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | -1 |
-1 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | -1 |
-1 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 1 |
G:=sub<GL(5,Integers())| [1,0,0,0,0,0,-1,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,1],[-1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,-1],[-1,0,0,0,0,0,-1,0,0,0,0,0,-1,0,0,0,0,0,-1,0,0,0,0,0,-1],[-1,0,0,0,0,0,-1,0,0,0,0,0,-1,0,0,0,0,0,-1,0,0,0,0,0,1],[1,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,1] >;
C25 in GAP, Magma, Sage, TeX
C_2^5
% in TeX
G:=Group("C2^5");
// GroupNames label
G:=SmallGroup(32,51);
// by ID
G=gap.SmallGroup(32,51);
# by ID
G:=PCGroup([5,-2,2,2,2,2]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^2=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,d*e=e*d>;
// generators/relations